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N ote 

A Numerical Method for Creep Deformation of Solids 

This note is concerned with extension of the procedure described by Andrews 
and Hancock [1] to time-dependent problems in which motion is slow enough that 
inertial forces are negligible. Time dependence of the solution may arise from stress 
relaxation of the material and from time-dependent boundary conditions. The 
procedure involves advancing through time in finite steps and iterating to achieve 
stress equilibrium at each step in time. It is discussed in terms of a Maxwellian 
viscoelastic model that can be generalized to nonlinear cases. 

Stress components cri s are decomposed into stress deviators and pressure: 

a i j  -~- SiS - -  P ~ i J  �9 

Pressure is uniquely determined by volume, but stress deviator components obey 
a stress relaxation law, which in differential form is 

dsis = 21~ dei~ --sis  dtlr 

where e~s is strain deviator, /z is shear modulus, and -r is relaxation time. If  ~ is 
constant this is linear Maxwellian viscoelasticity. In nonlinear cases ~" is a function 
of stress. To have a properly covariant description, ~- should be expressed as a 
function of stress invariants. 

The finite difference equation used to advance stress in one zone from time 
step n to step n + 1 is derived as follows. Let (0~j)~+l/2 be the strain deviator rate, 
found from velocities, for that zone for advancing from time step n to a particular 
iteration at time step n + 1. A finite difference analog of the differential equation 
above is 

( S i 3  n+l  = (S i j )  n -t-  2 t Z ( i i 3  n + l / z  At  

- 1 / 2 [ ( s . )  "+1  + ( s i D " ]  - -  
At  
T 

This may be rearranged to get an explicit equation 

(SiJ) n+l  ~-- [(St j)  n ~ -  2/x(it~)~+a/z A t 

This equation is stable for all values of At and is accurate to second order in Atl~. 
275 

Copyright �9 1973 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



276 ANDREWS 

An iteration must be performed to converge to stress equilibrium at time step 
n 4- 1. Solution of the above equation for all zones constitutes step 4 of the iteration 
outlined in [1]. 

To proceed through the next iteration at time step n + 1, stress components just 
calculated are used to find the unbalanced force on each grid point (step 1 of the 
iteration). Then, grid points are displaced in the direction of this force to go from 
positions in the previous iteration at time step n --}- 1 to positions in the current 
iteration at time step n 4- 1 (step 2). The velocities of grid points from time step n 
to the current iteration in time step n 4- 1, are found. From these velocities strain 
rates are found (step 3), and then the stress calculation may be repeated. 

In the case of  nonlinear stress relaxation, the relaxation time T should be 
evaluated from invariants of the stress tensor averaged at the new and old times. 
In this average one may use stress at time step n and stress from the previous 
iteration at time step n 4- 1. 

This procedure has been used in a problem with a cubic creep law. The iteration 
behaved in a reasonable way. 

To check the accuracy of the method a problem was done with a linear 
viscoelastic material in an infinite half space, with a pressure applied to the surface. 
The x-axis extends into the medium and the surface is at x = 0. The material 
has been at rest with no pressure on the surface at all times up to t = 0. At t = 0 
the pressure 

p = P cos o~y 

is suddenly applied to the surface and is held constant thereafter. The analytic 
solution is found by applying Bland's correspondence principle [2] to the elastic 
solution [3]. The components of  displacement are 

u = (P/2/z~) e -~* cos a y [ - - ( i z / k ) ( 1  - -  a)  e-a*/~" 4-  ( l~/k)  4- 1 4-  o~x 4-  (1 4- ~x) ( t /T)]  

and 

v = --(P/2/z~) e - ~  sin ~ y [ - - ( l z / k ) ( 1  - -  a).e-a*/~ § ( t z / k )  - -  a x  - -  a x ( t / z ) ] ,  

where k is bulk modulus and 

a -1 = 1 4- /z/(3k). 

At  t = 0 these expressions are the solution for the elastic case [3]. Note that in the 
elastic case the horizontal displacement reverses direction at a depth 

c~x = 1 - -  2v, 

while in the viscoelastic solution the horizontal velocity at late times is in the same 
direction at all depths. 
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In the numerical test case we will choose �9 ---- 1, a = 1, 2/z = 1, v = 0.2. The 
numerical method is valid for large displacements, but the analytic solution holds 
only for small displacements. To keep displacement small we choose P = 10 -4. 
Displacements are multiplied by 104 in the figures. 

In the finite difference calculation eight zones are used in a half wavelength of 
the pressure variation, and the region considered is 12 zones deep. Zones are 
approximately square. The pressure was suddenly applied at time zero, and the 
calculation proceeded for one relaxation time. The time step used was ~-/10. In 
each time step 200 iterations were performed to approach stress equilibrium. The 
number of iterations required for long wavelength components to converge 
increases when finer zoning is used. It is proportional to the square of the number 
of zones in one dimension. 

Displacements calculated after the first time step are shown in Fig. 1. This is 
approximately the elastic solution expected for instantaneous displacement. 
Variation of  each component of displacement in the direction parallel to the surface 
is sinusoidal, as it should be, within one percent. Time dependence of the 
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Displacement field in the demonstration problem after the first step in time. 



278 ANDREWS 

x-component  of  displacement at y = 0 is shown for four different depths in Fig. 2. 
Symbols show calculated values and the solid curves are the analytic solution. In 
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FIG. 2. Vertical displacement at four different depths as a function of time. Symbols are 
calculated values. Solid curves are the analytic solution. 
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Fro. 3. Horizontal displacement at four different depths or a function of time. Symbols are 
calculated values. Solid curves are the analytic solution. 
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the first t ime step er rors  are six percent  o f  the m a x i m u m  displacement .  This  e r ro r  
cou ld  have been reduced  by  using a larger  number  o f  i tera t ions .  The dev ia t ion  
f rom stress equ i l ib r ium is pa r t ly  cor rec ted  in the next  t ime step, where er rors  
a re  less than  two percent  o f  m a x i m u m  displacement .  T ime  dependence  o f  the  
y - c o m p o n e n t  o f  d i sp lacement  at  y = ~r/2 is shown in Fig.  3. 
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